View Single Post
Old 06-25-2004, 09:30 PM  
mb
Confirmed User
 
Join Date: May 2001
Location: San Diego
Posts: 1,550
I've held out long enough... time to share some knowledge... this is the true SEO power trick:

please be careful with it though

4+i - 3-2i / 1+i + 2+5i / 1+i - 10 + 7-3i + 2+3i = 1-i
4+i - 3-2i / 1+i - 7-3i + 10 - 1+i + 7-3i / 2+3i = 1-2i
4+i * 1+3i / 4+i - 2+5i - 1+3i + 1+i * 7-3i + 2+3i = 1+20i
4+i * 1+3i / 4+i - 2+5i - 1+3i + 10 - 7-3i + 2+3i = 3-i
4+i * 1+3i / 4+i - 2+5i - 1+3i + 10 - 7-3i - 2+3i = -1+7i
4+i * 1+3i / 4+i - 2+5i - 1+i + 10 - 7-3i + 2+3i = 3+i
4+i * 1+3i / 4+i - 2+5i - 1+i + 10 - 7-3i * 2+3i = 8-i
4+i * 1+3i / 4+i - 2+5i - 1+i + 10 - 7-3i - 2+3i = -1+5i
4+i * 1+3i - 2+5i / 3-2i + 1+i - 3-5i - 7-3i / 2+3i = -1+2i
4+i * 1+3i - 2+5i / 3-2i + 1+i - 10 + 7-3i + 2+3i = 1+i
4+i * 1+3i / 4+i + 3-2i - 3-5i + 2+5i / 1+i * 7-3i - 2+3i = -1+20i
4+i - 3-2i / 1+i + 2+5i / 1+i + 10 / 2+5i * 1+3i + 10 / 7-3i * 2+3i = 1+8i

The shortest solution takes five steps

(4+i) - (3-2i)
=> (1+3i) / (1+i)
=> (2+i) - 10
=> (-8+i) + (7-3i)
=> (-1-2i) + (2+3i)
=> (1+i)

Here are the values that you can have when you reach the finish (I think this is exhaustive, but I know it works):

-8+i -3-i -1-20i -1-8i -1-5i -1-i -1+i -1+2i
1-i 1-2i 1+i 1+5i 1+8i 1+20i 3+i 8-i
mb is offline   Share thread on Digg Share thread on Twitter Share thread on Reddit Share thread on Facebook Reply With Quote