dyna mo |
12-16-2014 12:31 PM |
thinking tech capable intelligent life exists elsewhere as a matter of fact stems from the misuse of the term statistical probability, which has been spun into the incorrect phrase statistical certainty, which is a misnomer.
the statistics referred to in this argument is Drake's equation, which currently is showing that
Quote:
In November 2013, astronomers reported, based on Kepler space mission data, that there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of sun-like stars and red dwarf stars within the Milky Way Galaxy. 11 billion of these estimated planets may be orbiting sun-like stars. Since there are about 100 billion stars in the galaxy, this implies fp*ne is roughly 0.4. The nearest planet in the habitable zone may be as little as 12 light-years away, according to the scientists.
|
11 billion opportunities for life, the closest being 12 light years away.
the problem, as Fermi's paradox points out then, is where are they all? The OP video explains clearly how THEY should have found us by now, not the other way around. the entire galaxy is easily colonized in an extremely short period of time and we should have been colonized many many times over based on Drake's equation.
also,
Quote:
Even if planets are in the habitable zone, however, the number of planets with the right proportion of elements is difficult to estimate. Brad Gibson, Yeshe Fenner, and Charley Lineweaver determined that about 10% of star systems in the Milky Way galaxy are hospitable to life, by having heavy elements, being far from supernovae and being stable for a sufficient time.
Also, the Rare Earth hypothesis, which posits that conditions for intelligent life are quite rare, has advanced a set of arguments based on the Drake equation that the number of planets or satellites that could support life is small, and quite possibly limited to Earth alone; in this case, the estimate of ne would be almost infinitesimally small.
The discovery of numerous gas giants in close orbit with their stars has introduced doubt that life-supporting planets commonly survive the formation of their stellar systems. In addition, most stars in our galaxy are red dwarfs, which flare violently, mostly in X-rays, a property not conducive to life as we know it. Simulations also suggest that these bursts erode planetary atmosphere.
|
more
Quote:
Geological evidence from the Earth suggests that life on Earth appears to have begun around the same time as favorable conditions arose, suggesting that abiogenesis may be relatively common once conditions are right. However, this evidence only looks at the Earth (a single model planet), and contains anthropic bias, as the planet of study was not chosen randomly, but by the living organisms that already inhabit it (ourselves).
From a classical hypothesis testing standpoint, there are zero degrees of freedom, permitting no valid estimates to be made. If life were to be found on Mars that developed independently from life on Earth it would imply a value for fl close to one. While this would improve the degrees of freedom from zero to one, there would remain a great deal of uncertainty on any estimate due to the small sample size, and the chance they are not really independent.
There is no evidence for abiogenesis occurring more than once on the Earth ?that is, all terrestrial life stems from a common origin. If abiogenesis were more common it would be speculated to have occurred more than once on the Earth. Scientists have searched for this by looking for bacteria that are unrelated to other life on Earth, but none have been found yet.
|
|